Alzheimer's Assocation Research only
All of alz.org
  • Go to Alz.org
  • Research Center
  • AAIC
  • ISTAART
  • Journal
  • Grants
  • TrialMatch
  • Press
  • Donate
  • Contact Us
Home
Science and Progress
Clinical Trials
Funding and Collaboration
You can Help
Stay Current
Video and Resources

Text Size

Small text Medium text Large text

 

 

 

Treatment Horizon


"The science of Alzheimer's has advanced to show potential underlying drivers of the disease. And we have candidate drugs we can test because of this basic science knowledge."

- Richard Mohs, Ph.D.
Eli Lilly and Company
At the Alzheimer's Association Research Roundtable

A worldwide quest is under way to find new treatments to stop, slow or even prevent Alzheimer's. Because new drugs take years to produce from concept to market—and because drugs that seem promising in early-stage studies may not work as hoped in large-scale trials—it is critical that Alzheimer's and related dementias research continue to accelerate. To ensure that the effort to find better treatments receives the focus it deserves, the Alzheimer's Association funds researchers looking at new treatment strategies and advocates for more federal funding of Alzheimer's research.

 

The hope for future drugs


Currently, there are five FDA-approved Alzheimer's drugs that treat the symptoms of Alzheimer's — temporarily helping memory and thinking problems — with a sixth drug available globally. But these medications do not treat the underlying causes of Alzheimer's.

In contrast, many of the new drugs in development aim to modify the disease process itself, by impacting one or more of the many wide-ranging brain changes that Alzheimer's causes. These changes offer potential "targets" for new drugs to stop or slow the progress of the disease. Many researchers believe successful treatment will eventually involve a "cocktail" of medications aimed at several targets, similar to current state-of-the-art treatments for many cancers and AIDS. Sign up for our weekly e-news and stay up-to-date on the latest advances in Alzheimer's treatments, care and research.

"Despite increasing momentum in Alzheimer's research, we still have two main obstacles to overcome. First, we need volunteers for clinical trials. Volunteering to participate in a study is one of the greatest ways someone can help move Alzheimer's research forward. Second, we need a significant increase in federal research funding. Investing in research now will cost our nation far less than the cost of care for the rising number of Americans who will be affected by Alzheimer's in coming decades."
- Bill Thies, Ph.D., Senior Scientist in Residence, Alzheimer's Association

Targets for future drugs


Over the last 30 years, researchers have made remarkable progress in understanding healthy brain function and what goes wrong in Alzheimer's disease. The following are examples of promising targets for next-generation drug therapies under investigation in current research studies:

  • Beta-amyloid is the chief component of plaques, one hallmark Alzheimer's brain abnormality. Scientists now have a detailed understanding of how this protein fragment is clipped from its parent compound amyloid precursor protein (APP) by two enzymes — beta-secretase and gamma-secretase — to form the beta-amyloid protein that is present in abnormally high levels in the brains of people with Alzheimer’s. Researchers are developing medications aimed at almost every point in amyloid processing. This includes blocking activity of beta-secretase enzyme; preventing the beta-amyloid fragments from clumping into plaques; and even using antibodies against beta-amyloid to clear it from the brain.

    Current drug in research that targets beta-amyloid: Aducanumab
    Aducanumab is a recombinant monoclonal antibody targeting aggregated forms of beta-amyloid, such as oligomers and fibrils, that can develop into amyloid plaque in the brains of people with Alzheimer’s disease. Early studies showed decreased levels of beta-amyloid in the brains of study volunteers. Two phase 3 studies are underway to test whether monthly doses of Aducanumab can slow cognitive and functional decline in people with early Alzheimer’s disease. The studies are expected to be completed in late 2019. (Drug is still in research; not available to the public.)
  • Beta-secretase (BACE) is one of the enzymes that clips APP and makes it possible for beta-amyloid to form. Therapies that interrupt this process may reduce the amount of beta-amyloid in the brain and ultimately intervene in the development of Alzheimer’s disease.

    Current drug in research that targets beta-secretase: JNJ-54861911
    JNJ-54861911 inhibits the ability of the beta-secretase enzyme to make beta-amyloid. It is currently in a phase 3 study to determine if it slows cognitive decline in people who do not have Alzheimer’s symptoms but do have elevated levels of beta-amyloid in the brain. The study is expected to be completed in 2024. JNJ-54861911 is administered in pill form. (Drug is still in research; not available to the public.)
  • Tau protein is the chief component of tangles, the other hallmark brain abnormality of Alzheimer’s. Tau protein helps maintain the structure of a neuron, including tiny tube-like structures called microtubules that deliver nutrients throughout the neuron.

    Current drug in research that targets tau protein: AADvac1
    AADvac1 is a vaccine that stimulates the body’s immune system to attack an abnormal form of tau protein that destabilizes the structure of neurons. If successful, it has the potential to help stop the progression of Alzheimer’s disease. A phase 2 clinical trial enrolling 185 volunteers with mild Alzheimer’s disease began in March 2015 and is expected to be completed in February 2019. (Drug is still in research; not available to the public.)

  • Inflammation in the brain has long been known to play a role in the changes that occur in Alzheimer’s disease. Both beta-amyloid plaques and tau tangles cause an immune response in the brain and microglia cells act as the first form of immune defense against them. However, while microglia help clear beta-amyloid in the brain, they can become overactive in the presence of plaques and produce compounds that damage nearby cells.

    Current drug in research that targets inflammation: Sargramostim
    Approved by the FDA for bone marrow stimulation in people with leukemia, Sargramostim stimulates the innate immune system. It is being tested in Alzheimer’s because it may stimulate immune processes that could protect neurons in the brain from toxic proteins. A phase 2 study of Sargramostim is underway. It is expected to be completed in late 2017. (Drug is still in research; not available to the public.)

  • The 5-HT2A receptor is found on the surface of many neurons that are involved with awareness and thinking. Molecules of the neurotransmitter serotonin fit into 5-HT2A receptors like a key fitting into a lock. When this happens, the 5-HT2A-containing neurons communicate more with their neighboring neurons. Over-active communication between neurons, however, may play a role in dementia-related psychosis.

    Current drug in research that targets 5-HT2A: Pimavanserin
    Pimavanserin is an inverse agonist for the 5-HT2A receptor. This means that pimavanserin mimics the shape of the serotonin ‘key’ and fits into the 5-HT2A ‘lock’. However, pimavanserin has the opposite effect of serotonin: it reduces communication between neurons. This may have the effect of reducing the symptoms of dementia-related psychosis. A phase 3 clinical trial of pimavanserin is underway. The study is expected to be completed in September 2020. (Drug is still in research; not available to the public.)

Back to top

Alzheimer's prevention trials


The Anti-Amyloid Treatment in Asymptomatic Alzheimer's Disease (A4) Study
The A4 Study is studying the effectiveness of solanezumab, a drug targeting beta-amyloid, in 1,150 symptom-free volunteers whose PET scans show abnormally high levels of beta-amyloid in the brain. High levels of beta-amyloid in the brain increase the risk for developing Alzheimer's disease. Researchers hope that early intervention in individuals at increased risk of developing Alzheimer's will prevent the cognitive decline of this devastating and ultimately fatal disease.

TOMMORROW Trial
The TOMMORROW Trial includes 3,500 asymptomatic individuals, some of whom have the Alzheimer's risk gene apolipoprotein E e4 (APOE-e4) or the TOMM40 risk gene. The trial will explore whether the anti-diabetes drug pioglitazone can prevent mild cognitive impairment due to Alzheimer's disease. Studies suggest that pioglitazone may decrease inflammation and beta-amyloid levels in the brain, improve blood flow to the brain and increase the brain's ability to use glucose to fuel nerve cells.

Dominantly Inherited Alzheimer Network Trials Unit (DIAN-TU)
Mutations on three genes are known to cause a rare form of Alzheimer’s disease that accounts for less than 1 percent of cases. When a person has one of these mutations, he or she has a 95 to 100 percent chance of developing Alzheimer’s. DIAN-TU hopes to slow or stop the development of Alzheimer’s in these individuals with experimental drugs. Two drugs, gantenerumab and solanezumab, are currently being tested. Both are designed to help remove excess beta-amyloid in the brain. The brain changes of people with this form of Alzheimer’s are very similar to the brain changes of those with the more common sporadic form of Alzheimer’s disease. It’s possible that a drug that slows or stop Alzheimer’s in DIAN-TU participants will also slow or stop Alzheimer’s in people with or at high risk of sporadic Alzheimer’s.

The Alzheimer's Prevention Initiative (API)
API includes both the Autosomal Dominant Alzheimer's Disease (ADAD) trial and the Generation Study. Like DIAN-TU, the ADAD trial tests therapies in people who have a gene mutation that causes Alzheimer’s, but who have not yet developed symptoms. Drugs that delay or prevent symptoms in people with genetic mutations for Alzheimer's may potentially delay or prevent symptoms in people with the brain changes of Alzheimer's who do not have these genetic mutations. The ADAD trial is studying the effects of crenezumab, an immune-based therapy. Crenezumab delivers antibodies against beta-amyloid in an effort to reduce the negative cognitive effects of excess beta-amyloid. The Generation Study includes cognitively healthy older adults who are at high risk of developing Alzheimer’s based on their age and having two copies of the Alzheimer’s risk gene apolipoprotein (APOE)-e4. This study focuses on whether two investigational drugs – an active immunotherapy (CAD106) and a BACE inhibitor (CNP520) – can prevent or delay the onset of Alzheimer’s symptoms.

 

Participate in a clinical trial


If you are interested in participating in a current clinical trial, use Alzheimer's Association TrialMatch®, a free individualized service that matches volunteers with trials based on certain criteria, such as stage of disease, current treatments and location. A lack of volunteers for Alzheimer's clinical trials is one of the greatest obstacles slowing the progress of potential new treatments.

Related information


Sign up for our weekly e-newsletter
Stay up-to-date on the latest advances in Alzheimer's treatments, care and research. Subscribe now



Alzheimer's Association International Conference | July 16-20, 2017, London, England

Abstract Submissions Now Open

The Scientific Program Committee is now accepting submissions for poster
presentations, oral presentations and featured research sessions.